Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations

نویسندگان

  • Adam Kurpisz
  • Samuli Leppänen
  • Monaldo Mastrolilli
چکیده

We introduce a method for proving Sum-of-Squares (SoS)/ Lasserre hierarchy lower bounds when the initial problem formulation exhibits a high degree of symmetry. Our main technical theorem allows us to reduce the study of the positive semidefiniteness to the analysis of “well-behaved” univariate polynomial inequalities. We illustrate the technique on two problems, one unconstrained and the other with constraints. More precisely, we give a short elementary proof of Grigoriev/Laurent lower bound for finding the integer cut polytope of the complete graph. We also show that the SoS hierarchy requires a non-constant number of rounds to improve the initial integrality gap of 2 for the Min-Knapsack linear program strengthened with cover inequalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum of squares lower bounds from symmetry and a good story

In this paper, we develop machinery for proving sum of squares lower bounds on symmetric problems based on the intuition that sum of squares has difficulty capturing integrality arguments, i.e. arguments that an expression must be an integer. Using this machinery, we prove a tight sum of squares lower bound for the following Turan type problem: Minimize the number of triangles in a graph $G$ wi...

متن کامل

Association schemes, non-commutative polynomial concentration, and sum-of-squares lower bounds for planted clique

Finding cliques in random graphs and the closely related “planted” clique variant, where a clique of size t is planted in a random G(n, 1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomialtime algorithms only solve the problem for t = Θ( √ n). Here we show that beating √ n would require substantially new algorithmic ideas, by p...

متن کامل

The Lasserre Hierarchy in Almost Diagonal Form

The Lasserre hierarchy is a systematic procedure for constructing a sequence of increasingly tight relaxations that capture the convex formulations used in the best available approximation algorithms for a wide variety of optimization problems. Despite the increasing interest, there are very few techniques for analyzing Lasserre integrality gaps. Satisfying the positive semi-definite requiremen...

متن کامل

Tight Sum-Of-Squares Lower Bounds for Binary Polynomial Optimization Problems

We give two results concerning the power of the Sum-of-Squares(SoS)/Lasserre hierarchy. For binary polynomial optimization problems of degree 2d and an odd number of variables n, we prove that n+2d−1 2 levels of the SoS/Lasserre hierarchy are necessary to provide the exact optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito. Additionally, we study a conjectu...

متن کامل

Moment Methods in Energy Minimization: New Bounds for Riesz Minimal Energy Problems

We use moment methods to construct a converging hierarchy of optimization problems to lower bound the ground state energy of interacting particle systems. We approximate the infinite dimensional optimization problems in this hierarchy by block diagonal semidefinite programs. For this we develop the necessary harmonic analysis for spaces consisting of subsets of another space, and we develop sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016